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Isoprenoids are one of the largest and most structurally diverse Scheme 1. Two IspH Reaction Models
groups of metabolites in nature. Plants alone produce more than Model A )\/\
30,000 isoprenoidsThe biosynthesis of isoprenoids requires two " OPPi
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precursors, isopentenyl diphosphate (IFF, and its isomer, A1 ;ﬁl"\"\ . )\/\ . +
dimethylallyl diphosphate (DMAPR3, Scheme 1). There are two ﬁ‘\“’l/'\op"i - Fon 21O — "c;“ o _k“='=.. )%./\Oppi
different pathways to synthesiz2 and 3: the deoxyxylulose - 1 Yape-asp ® e aspt :

phosphate (DXP) pathway and the mevalonic acid (MVA) path-
way?2 More importantly, these two pathways have a well-defined  nodel B
distribution among different kingdoms. Most pathogenic bacteria

[4Fe - 45]*
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. . . . (zRI ’H_BI ‘12e
and pro.tozoan.pgrasnes gtlllze the DXP pathway, while aplmals ‘ Hou %\%cnm H'+2
synthesize their isoprenoid precursors from acetyl-CoA via the JMWN —_— ;_LL_ /I\:\
MVA pathway. Plants have both DXP and MVA pathwayEhus, o1 i ci):*i . = o
mechanistic studies on the DXP pathway enzymes may lead to the | fare-asp +

development of mechanism-based inhibitors as herbicides, broad- [4Fe - 45"
spectrum antibiotics, and antimalaria dridgs. _

IspH in the DXP pathway catalyzes the reductive dehydration Scfieme 2. Evaluation of Two IspH Substrate Analogues
of (E)-4-hydroxy-3-methyl-2-butenyl diphosphate (HMBPE to X )F -
form 2 and3. Studies in the past few years led to the establishment I)w"""i - )\/\0""‘ * )\/\“""
of the in vitroEscherichia colispH catalytic system, which includes 2 3

IspH, flavodoxin, and flavodoxin reducta%eé? The iron-sulfur H\Aﬁ . )\/\ﬂ e
cluster containinge. coli IspH, a 36 kDa protein, has only three I ::;_'O_j;_'o —o—i o
conserved Cys residues (C12, C96, and C19Replacement of s % ¢

any of the three conserved cysteine residues reduced the catalytic
activity by a factor of more than 70,000.Recent EPR studies
suggest that the isolated IspH has a [3B8]" cluster, which is
attributed to the loss of the unique iron-site iron from a [4B&]
cluster” 1011 |n this work, we studied the IspH-catalyzed-O
bond cleavage mechanism. The activities at bathri@l G positions
are examined.

Recently, Rodich et al. proposed a mechanism (model A in
Scheme 1) to explain this unusual transformafidmn.this model,
it is believed that conformation restrictions at the enzyme active
site favor the @ hydroxyl group as the leaving group instead of
the better leaving group, pyrophosphate at thep@sitioni3 In
addition, the @ hydroxyl group is directly ligated to the unique
iron site of the iroa-sulfur cluster to facilitate this process. In this

model, the i_rOPrsquur cluster is involved in both the dehy_dratiop to directly analyze the products, and the NADPH consumption assay
and reduction steps. To generate the proposed allylic radical 5t 340 nm to determine the kinetic parameters using NADPH-

intermediate, it goes through the reduction of the double bond 10 g5\ 04oxin—flavodoxin reductase as a reducing system. The purified
produce a radical anion intermediate, which is then used to medlate|SpH has akea Of 11.6 min and ak, lower than 15M, which

the dehydration reaction. The resulting allylic radical intermediate
is then reduced to the produc®&nd3). Model A (Scheme 1) is

(5) (Scheme 2), with a €F or C—P linkage, respectively, are used
to study the IspH-catalyzed-€O bond cleavage mechanism at both
C; and G positions. Our results clearly demonstrated thaa@d
not G heterolytic C-O bond cleavage occurs and that thg C
hydroxyl group is involved in substrate binding.

We have overproduced IspH B coli and purified the protein
anaerobically to near homogeneity. The YV¥is spectrum of the
anaerobically purified IspH is consistent with the presence ofiron
sulfur clusters, e.g., the features at around 320 and 410 nm (Figure
1S). Under optimized conditions (Supporting Information), IspH
protein with anAs1/Azgo ratio of 0.4, close to that reported in
literature, can be reproducibly obtained without reconstitutfon.
Purified IspH was characterized by two assaysHth&IMR assay

are close to the reported ddfarhe ratio of2 to 3 produced from
1 was determined to be 5:1 (Figure 2S), which is similar to the

not the only route to the reductive dehydration produ@nd3.  reported 4.5:1 ratiét For enzymatic transformation of pyrophos-
Another option (model B in Scheme 1) is through a deprotonation- phate-containing substrates, divalent metals such &s@ag2+

mediated dehydration reaction as found in aconitase, followed by . normally required. We examined the effect of divalent metals

reductions. _ on IspH activity, and no significant effects were observed, which
Two mechanistic probesE]-3-(fluoromethyl)-2-butenyl diphos-  \yas consistent with that reportét.

phate §) and €)-4-hydroxy-3-methyl-2-butenyl pyrophosphonate g pstrate analoguk(Scheme 2) with a fluorine atom replacing

* Boston University. the G hydroxyl group was synthesized according to a literature
#Dalian Institute of Chemical Physics. proceduré? Because of the strong electronegativity of the fluorine
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atom, the G-F bond cleaves heterolytically. If the formation of In conclusion, IspH does not fall into the two known classes of
the allylic radical in Scheme 1 is a one-step reductive homolytic unique iron-site-containing irensulfur proteins. Biochemical data
C—0 bond cleavage reactiod,will only be an inhibitor, and no reported herein provide crucial evidence to not only support the

enzymatic turnover is expected. Substrate anal&g{8cheme 2), integrity of the G position C-O bond during reaction, but also
with a pyrophosphonate function group € bond) at the € suggest a heterolytic €0 bond cleavage at the,@osition for
position, was also prepared (Scheme 1S). Because of-fetond IspH-catalyzed reductive dehydration reaction. Also, the nearly 200-

stability, 5 will only be an inhibitor, and no enzymatic turnover fold increase irk,, with 4 relative tol indicates that the £hydroxyl
will occur if C—0O bond cleavage at the; @osition is one of the group is involved in substrate binding. We are currently carrying

steps in catalysis. out more in-depth investigations to understand the unique IspH-
Interestingly, both and5 are IspH substrates (Scheme 2), with  catalyzed transformations, the compositions of the -irsmfur

akegt 0f 0.55 mirt and aK,, of 3.95 mM for4 and akg, of 0.44 cluster, and its role in catalysis.

min~* and aKp, lower than 15uM for 5. IspH convertsA to a Acknowledgment. This work is supported by the Boston

mixture of 2 and3 in a ratio of 7:1, which is slightly higher than  yniversity startup fund for P.L. We thank Professor Dennis Dean’s
the ratio of products produced froth The release of a fluoride  |aporatory at Virginia Polytechnic Institute for providing pDB1281

anion as the product fromh was directly detected usingF NMR plasmid. We also thank Mr. Lingdong Li for his participation in
(Figure 3S).*H NMR analysis of HPLC-purified product frors this work.

implies that only6 is produced, and its identity was confirmed by
comparison with the synthetic standards (Figures 4S and 5S).
The results from the above studies are mechanistically informa-

Supporting Information Available: Procedures of IspH purifica-
tion and assay$H NMR spectra ofl, 4, 5, 6; 1%F NMR spectra of4
and fluoride anion (NaF solution); synthetic schemé.ofhis material
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